TitleDateAuthorsDOI
The landscape of viral associations in human cancers2020-03-01Zapatka, M; Borozan, I; Brewer, DS; Iskar, M; Grundhoff, A; Alawi, M; Desai, N; Sültmann, H; Moch, H; Cooper, CS; Eils, R; Ferretti, V; Lichter, P (2020). The landscape of viral associations in human cancers. Nature Genetics, 52(3), 320-+. DOI: 10.1038/s41588-019-0558-9https://doi.org/10.1038/s41588-019-0558-9
Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer2020-03-01Akdemir, KC; Le, VTT; Chandran, S; Li, YL; Verhaak, RG; Beroukhim, R; Campbell, PJ; Chin, L; Dixon, JR; Futreal, PA; Alvarez, EG; Baez-Ortega, A; Bero (2020). Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nature Genetics, 52(3), 294-+. DOI: 10.1038/s41588-019-0564-yhttps://doi.org/10.1038/s41588-019-0564-y
Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data2020-02-12Holland, CH; Tanevski, J; Perales-Patón, J; Gleixner, J; Kumar, MP; Mereu, E; Joughin, BA; Stegle, O; Lauffenburger, DA; Heyn, H; Szalai, B; Saez-Rodr (2020). Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biology, 21(1), 36-. DOI: 10.1186/s13059-020-1949-zhttps://doi.org/10.1186/s13059-020-1949-z
Analyses of non-coding somatic drivers in 2,658 cancer whole genomes2020-02-06Rheinbay, E; Nielsen, MM; Abascal, F; Wala, JA; Shapira, O; Tiao, G; Hornshoj, H; Hess, JM; Juul, RI; Lin, Z; Feuerbach, L; Sabarinathan, R; Madsen, T (2020). Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature, 578(7793), 102-+. DOI: 10.1038/s41586-020-1965-xhttps://doi.org/10.1038/s41586-020-1965-x
Pan-cancer analysis of whole genomes2020-02-06Campbell, PJ; Getz, G; Korbel, JO; Stuart, JM; Jennings, JL; Stein, LD; Perry, MD; Nahal-Bose, HK; Ouellette, BFF; Li, CH; Rheinbay, E; Nielsen, GP; S (2020). Pan-cancer analysis of whole genomes. Nature, 578(7793), 82-+. DOI: 10.1038/s41586-020-1969-6https://doi.org/10.1038/s41586-020-1969-6
Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis2020-02-05Carlevaro-Fita, J; Lanzós, A; Feuerbach, L; Hong, C; Mas-Ponte, D; Pedersen, JS; Johnson, R; Abascal, F; Amin, SB; Bader, GD; Barenboim, J; Beroukhim, (2020). Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol, 3(1), 56-. DOI: 10.1038/s42003-019-0741-7https://doi.org/10.1038/s42003-019-0741-7
High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations2020-02-05Zhang, YQ; Chen, FJ; Fonseca, NA; He, Y; Fujita, M; Nakagawa, H; Zhang, ZM; Brazma, A; Creighton, CJ (2020). High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations. Nature Communications, 11(1), 736-. DOI: 10.1038/s41467-019-13885-whttps://doi.org/10.1038/s41467-019-13885-w
Inferring structural variant cancer cell fraction2020-02-05Cmero, M; Yuan, K; Ong, CS; Schröder, J; Corcoran, NM; Papenfuss, T; Hovens, CM; Markowetz, F; Macintyre, G (2020). Inferring structural variant cancer cell fraction. Nature Communications, 11(1), 730-. DOI: 10.1038/s41467-020-14351-8https://doi.org/10.1038/s41467-020-14351-8
Genomic footprints of activated telomere maintenance mechanisms in cancer2020-02-05Sieverling, L; Hong, C; Koser, SD; Ginsbach, P; Kleinheinz, K; Hutter, B; Braun, DM; Cortés-Ciriano, I; Xi, RB; Kabbe, R; Park, PJ; Eils, R; Schlesner (2020). Genomic footprints of activated telomere maintenance mechanisms in cancer. Nature Communications, 11(1), 733-. DOI: 10.1038/s41467-019-13824-9https://doi.org/10.1038/s41467-019-13824-9
Pathway and network analysis of more than 2500 whole cancer genomes2020-02-05Reyna, MA; Haan, D; Paczkowska, M; Verbeke, LPC; Vazquez, M; Kahraman, A; Pulido-Tamayo, S; Barenboim, J; Wadi, L; Dhingra, P; Shrestha, R; Getz, G; L (2020). Pathway and network analysis of more than 2500 whole cancer genomes. Nature Communications, 11(1), 729-. DOI: 10.1038/s41467-020-14367-0https://doi.org/10.1038/s41467-020-14367-0
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns2020-02-05Jiao, W; Atwal, G; Polak, P; Karlic, R; Cuppen, E; Danyi, A; de Ridder, J; van Herpen, C; Lolkema, MP; Steeghs, N; Getz, G; Morris, Q; Stein, LD (2020). A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nature Communications, 11(1), 728-. DOI: 10.1038/s41467-019-13825-8https://doi.org/10.1038/s41467-019-13825-8
Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig2020-02-05Rubanova, Y; Shi, RA; Harrigan, CF; Li, RJ; Wintersinger, J; Sahin, N; Deshwar, A; Morris, Q (2020). Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig. Nature Communications, 11(1), 731-. DOI: 10.1038/s41467-020-14352-7https://doi.org/10.1038/s41467-020-14352-7
Combined burden and functional impact tests for cancer driver discovery using DriverPower2020-02-05Shuai, SM; Gallinger, S; Stein, L (2020). Combined burden and functional impact tests for cancer driver discovery using DriverPower. Nature Communications, 11(1), 734-. DOI: 10.1038/s41467-019-13929-1https://doi.org/10.1038/s41467-019-13929-1
Integrative pathway enrichment analysis of multivariate omics data2020-02-05Paczkowska, M; Barenboim, J; Sintupisut, N; Fox, NS; Zhu, H; Abd-Rabbo, D; Mee, MW; Boutros, PC; Reimand, J (2020). Integrative pathway enrichment analysis of multivariate omics data. Nature Communications, 11(1), 735-. DOI: 10.1038/s41467-019-13983-9https://doi.org/10.1038/s41467-019-13983-9
Divergent mutational processes distinguish hypoxic and normoxic tumours2020-02-05Bhandari, V; Li, CH; Bristow, RG; Boutros, PC (2020). Divergent mutational processes distinguish hypoxic and normoxic tumours. Nature Communications, 11(1), 737-. DOI: 10.1038/s41467-019-14052-xhttps://doi.org/10.1038/s41467-019-14052-x
Alazami syndrome: the first case of papillary thyroid carcinoma2020-02-01Ivanovski, I; Caraffi, SG; Magnani, E; Rosato, S; Pollazzon, M; Matalonga, L; Piana, S; Nicoli, D; Baldo, C; Bernasconi, S; Frasoldati, A; Zuffardi, O (2020). Alazami syndrome: the first case of papillary thyroid carcinoma. Journal Of Human Genetics, 65(2), 133-141. DOI: 10.1038/s10038-019-0682-5https://doi.org/10.1038/s10038-019-0682-5
COL4A1-related autosomal recessive encephalopathy in 2 Turkish children2020-02-01Yaramis, A; Lochmüller, H; Töpf, A; Sonmezler, E; Yilmaz, E; Hiz, S; Yis, U; Gungor, S; Polat, AI; Edem, P; Beltran, S; Laurie, S; Yaramis, A; Horvath (2020). COL4A1-related autosomal recessive encephalopathy in 2 Turkish children. Neurol Genet, 6(1), e392-. DOI: 10.1212/NXG.0000000000000392https://doi.org/10.1212/NXG.0000000000000392
Genome-wide profiling of non-smoking-related lung cancer cells reveals common RB1 rearrangements associated with histopathologic transformation in EGFR-mutant tumors2020-02-01Pros, E; Saigi, M; Alameda, D; Gomez-Mariano, G; Martinez-Delgado, B; Alburquerque-Bejar, JJ; Carretero, J; Tonda, R; Esteve-Codina, A; Catala, I; Pal (2020). Genome-wide profiling of non-smoking-related lung cancer cells reveals common RB1 rearrangements associated with histopathologic transformation in EGFR-mutant tumors. Annals Of Oncology, 31(2), 274-282. DOI: 10.1016/j.annonc.2019.09.001https://doi.org/10.1016/j.annonc.2019.09.001
Blood eosinophil count and airway epithelial transcriptome relationships in COPD versus asthma2020-02-01George, L; Taylor, AR; Esteve-Codina, A; Artigas, MS; Thun, GA; Bates, S; Pavlidis, S; Wagers, S; Boland, A; Prasse, A; Boschetto, P; Parr, DG; Nowins (2020). Blood eosinophil count and airway epithelial transcriptome relationships in COPD versus asthma. Allergy, 75(2), 370-380. DOI: 10.1111/all.14016https://doi.org/10.1111/all.14016
Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual2020-01-09Kuderna, LFK; Solís-Moruno, M; Batlle-Masó, L; Julià, E; Lizano, E; Anglada, R; Ramírez, E; Bote, A; Tormo, M; Marquès-Bonet, T; Fornas, O; Casals, F (2020). Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual. Frontiers In Genetics, 10(), 1315-. DOI: 10.3389/fgene.2019.01315https://doi.org/10.3389/fgene.2019.01315