TitleDateReferenceDOI
Exome sequencing identifies PEX6 mutations in three cases diagnosed with Retinitis Pigmentosa and hearing impairment2020-03-18García-García, G; Sanchez-Navarro, I; Aller, E; Jaijo, T; Fuster-Garcia, C; Rodríguez-Munoz, A; Vallejo, E; Telleria, JJ; Vázquez, S; Beltrán, S; Derd (2020). Exome sequencing identifies PEX6 mutations in three cases diagnosed with Retinitis Pigmentosa and hearing impairment. Molecular Vision, 26(), 216-225https://doi.org/
Differential DNA methylation of vocal and facial anatomy genes in modern humans2020-03-04Gokhman, D; Nissim-Rafinia, M; Agranat-Tamir, L; Housman, G; García-Pérez, R; Lizano, E; Cheronet, O; Mallick, S; Nieves-Colón, MA; Li, H; Alpaslan-Ro (2020). Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nature Communications, 11(1), 1189-. DOI: 10.1038/s41467-020-15020-6https://doi.org/10.1038/s41467-020-15020-6
The Dutch Y-chromosomal landscape2020-03-01Altena, E; Smeding, R; van der Gaag, KJ; Larmuseau, MHD; Decorte, R; Lao, O; Kayser, M; Kraaijenbrink, T; de Knijff, P (2020). The Dutch Y-chromosomal landscape. European Journal Of Human Genetics, 28(3), 287-299. DOI: 10.1038/s41431-019-0496-0https://doi.org/10.1038/s41431-019-0496-0
Impact of Chromosome Fusions on 3D Genome Organization and Gene Expression in Budding Yeast2020-03-01Di Stefano, M; Di Giovanni, F; Pozharskaia, V; Gomar-Alba, M; Bau, D; Carey, LB; Marti-Renom, MA; Mendoza, M (2020). Impact of Chromosome Fusions on 3D Genome Organization and Gene Expression in Budding Yeast. Genetics, 214(3), 651-667. DOI: 10.1534/genetics.119.302978https://doi.org/10.1534/genetics.119.302978
Plasmodium vivax Malaria Viewed through the Lens of an Eradicated European Strain2020-03-01van Dorp, L; Gelabert, P; Rieux, A; de Manuel, M; de-Dios, T; Gopalakrishnan, S; Caroe, C; Sandoval-Velasco, M; Fregel, R; Olalde, I; Escosa, R; Arand (2020). Plasmodium vivax Malaria Viewed through the Lens of an Eradicated European Strain. Molecular Biology And Evolution, 37(3), 773-785. DOI: 10.1093/molbev/msz264https://doi.org/10.1093/molbev/msz264
Severe neurodevelopmental disease caused by a homozygous TLK2 variant2020-03-01Töpf, A; Oktay, Y; Balaraju, S; Yilmaz, E; Sonmezler, E; Yis, U; Laurie, S; Thompson, R; Roos, A; MacArthur, DG; Yaramis, A; Güngör, S; Lochmüller, H; (2020). Severe neurodevelopmental disease caused by a homozygous TLK2 variant. European Journal Of Human Genetics, 28(3), 383-387. DOI: 10.1038/s41431-019-0519-xhttps://doi.org/10.1038/s41431-019-0519-x
Congenital myasthenic syndrome with mild intellectual disability caused by a recurrent SLC25A1 variant2020-03-01Balaraju, S; Töpf, A; McMacken, G; Kumar, VP; Pechmann, A; Roper, H; Vengalil, S; Polavarapu, K; Nashi, S; Mahajan, NP; Barbosa, IA; Deshpande, C; Tay (2020). Congenital myasthenic syndrome with mild intellectual disability caused by a recurrent SLC25A1 variant. European Journal Of Human Genetics, 28(3), 373-377. DOI: 10.1038/s41431-019-0506-2https://doi.org/10.1038/s41431-019-0506-2
Phylogenomics Identifies an Ancestral Burst of Gene Duplications Predating the Diversification of Aphidomorpha2020-03-01Julca, I; Marcet-Houben, M; Cruz, F; Vargas-Chavez, C; Johnston, JS; Gómez-Garrido, J; Frias, L; Corvelo, A; Loska, D; Cámara, F; Gut, M; Alioto, T; L (2020). Phylogenomics Identifies an Ancestral Burst of Gene Duplications Predating the Diversification of Aphidomorpha. Molecular Biology And Evolution, 37(3), 730-756. DOI: 10.1093/molbev/msz261https://doi.org/10.1093/molbev/msz261
Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing2020-03-01Cortés-Ciriano, I; Lee, JJK; Xi, RB; Jain, D; Jung, YL; Yang, LX; Gordenin, D; Klimczak, LJ; Zhang, CZ; Pellman, DS; Park, PJ; Akdemir, KC; Alvarez, E (2020). Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nature Genetics, 52(3), 331-+. DOI: 10.1038/s41588-019-0576-7https://doi.org/10.1038/s41588-019-0576-7
Comprehensive molecular characterization of mitochondrial genomes in human cancers2020-03-01Yuan, Y; Ju, YS; Kim, Y; Li, J; Wang, YM; Yoon, CJ; Yang, Y; Martincorena, I; Creighton, CJ; Weinstein, JN; Xu, YX; Han, L; Kim, HL; Nakagawa, H; Park (2020). Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nature Genetics, 52(3), 342-+. DOI: 10.1038/s41588-019-0557-xhttps://doi.org/10.1038/s41588-019-0557-x
Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition2020-03-01Rodriguez-Martin, B; Alvarez, EG; Baez-Ortega, A; Zamora, J; Supek, F; Demeulemeester, J; Santamarina, M; Ju, YS; Temes, J; Garcia-Souto, D; Detering, (2020). Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nature Genetics, 52(3), 306-+. DOI: 10.1038/s41588-019-0562-0https://doi.org/10.1038/s41588-019-0562-0
The landscape of viral associations in human cancers2020-03-01Zapatka, M; Borozan, I; Brewer, DS; Iskar, M; Grundhoff, A; Alawi, M; Desai, N; Sültmann, H; Moch, H; Cooper, CS; Eils, R; Ferretti, V; Lichter, P (2020). The landscape of viral associations in human cancers. Nature Genetics, 52(3), 320-+. DOI: 10.1038/s41588-019-0558-9https://doi.org/10.1038/s41588-019-0558-9
Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer2020-03-01Akdemir, KC; Le, VTT; Chandran, S; Li, YL; Verhaak, RG; Beroukhim, R; Campbell, PJ; Chin, L; Dixon, JR; Futreal, PA; Alvarez, EG; Baez-Ortega, A; Bero (2020). Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nature Genetics, 52(3), 294-+. DOI: 10.1038/s41588-019-0564-yhttps://doi.org/10.1038/s41588-019-0564-y
Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data2020-02-12Holland, CH; Tanevski, J; Perales-Patón, J; Gleixner, J; Kumar, MP; Mereu, E; Joughin, BA; Stegle, O; Lauffenburger, DA; Heyn, H; Szalai, B; Saez-Rodr (2020). Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biology, 21(1), 36-. DOI: 10.1186/s13059-020-1949-zhttps://doi.org/10.1186/s13059-020-1949-z
Analyses of non-coding somatic drivers in 2,658 cancer whole genomes2020-02-06Rheinbay, E; Nielsen, MM; Abascal, F; Wala, JA; Shapira, O; Tiao, G; Hornshoj, H; Hess, JM; Juul, RI; Lin, Z; Feuerbach, L; Sabarinathan, R; Madsen, T (2020). Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature, 578(7793), 102-+. DOI: 10.1038/s41586-020-1965-xhttps://doi.org/10.1038/s41586-020-1965-x
Pan-cancer analysis of whole genomes2020-02-06Campbell, PJ; Getz, G; Korbel, JO; Stuart, JM; Jennings, JL; Stein, LD; Perry, MD; Nahal-Bose, HK; Ouellette, BFF; Li, CH; Rheinbay, E; Nielsen, GP; S (2020). Pan-cancer analysis of whole genomes. Nature, 578(7793), 82-+. DOI: 10.1038/s41586-020-1969-6https://doi.org/10.1038/s41586-020-1969-6
Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis2020-02-05Carlevaro-Fita, J; Lanzós, A; Feuerbach, L; Hong, C; Mas-Ponte, D; Pedersen, JS; Johnson, R; Abascal, F; Amin, SB; Bader, GD; Barenboim, J; Beroukhim, (2020). Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol, 3(1), 56-. DOI: 10.1038/s42003-019-0741-7https://doi.org/10.1038/s42003-019-0741-7
High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations2020-02-05Zhang, YQ; Chen, FJ; Fonseca, NA; He, Y; Fujita, M; Nakagawa, H; Zhang, ZM; Brazma, A; Creighton, CJ (2020). High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations. Nature Communications, 11(1), 736-. DOI: 10.1038/s41467-019-13885-whttps://doi.org/10.1038/s41467-019-13885-w
Inferring structural variant cancer cell fraction2020-02-05Cmero, M; Yuan, K; Ong, CS; Schröder, J; Corcoran, NM; Papenfuss, T; Hovens, CM; Markowetz, F; Macintyre, G (2020). Inferring structural variant cancer cell fraction. Nature Communications, 11(1), 730-. DOI: 10.1038/s41467-020-14351-8https://doi.org/10.1038/s41467-020-14351-8
Genomic footprints of activated telomere maintenance mechanisms in cancer2020-02-05Sieverling, L; Hong, C; Koser, SD; Ginsbach, P; Kleinheinz, K; Hutter, B; Braun, DM; Cortés-Ciriano, I; Xi, RB; Kabbe, R; Park, PJ; Eils, R; Schlesner (2020). Genomic footprints of activated telomere maintenance mechanisms in cancer. Nature Communications, 11(1), 733-. DOI: 10.1038/s41467-019-13824-9https://doi.org/10.1038/s41467-019-13824-9