TitleDateAuthorsDOI
Dual role of integrin alpha-6 in glioblastoma: Supporting stemness in proneural stem-like cells while inducing radioresistance in mesenchymal stem-like cells2021-06-01Stanzani, E; Pedrosa, L; Bourmeau, G; Anezo, O; Noguera-Castells, A; Esteve-Codina, A; Passoni, L; Matteoli, M; de la Iglesia, N; Seano, G; Martínez-S (2021). Dual role of integrin alpha-6 in glioblastoma: Supporting stemness in proneural stem-like cells while inducing radioresistance in mesenchymal stem-like cells. Cancers, 13(12), 3055-. DOI: 10.3390/cancers13123055https://doi.org/10.3390/cancers13123055
Variation in predicted COVID-19 risk among lemurs and lorises2021-06-01Melin, AD; Orkin, JD; Janiak, MC; Valenzuela, A; Kuderna, L; Marrone, F; Ramangason, H; Horvath, JE; Roos, C; Kitchener, AC; Khor, CC; Lim, WK; Lee, J (2021). Variation in predicted COVID-19 risk among lemurs and lorises. American Journal Of Primatology, 83(6), e23255-. DOI: 10.1002/ajp.23255https://doi.org/10.1002/ajp.23255
Clinical Manifestations in a Girl with NAA10-Related Syndrome and Genotype-Phenotype Correlation in Females2021-06-01Maini, I; Caraffi, SG; Peluso, F; Valeri, L; Nicoli, D; Laurie, S; Baldo, C; Zuffardi, O; Garavelli, L (2021). Clinical Manifestations in a Girl with NAA10-Related Syndrome and Genotype-Phenotype Correlation in Females. Genes, 12(6), 900-. DOI: 10.3390/genes12060900https://doi.org/10.3390/genes12060900
Impact of DNA methylation on 3D genome structure2021-05-28Buitrago, D; Labrador, M; Arcon, JP; Lema, R; Flores, O; Esteve-Codina, A; Blanc, J; Villegas, N; Bellido, D; Gut, M; Dans, PD; Heath, SC; Gut, IG; He (2021). Impact of DNA methylation on 3D genome structure. Nature Communications, 12(1), 3243-. DOI: 10.1038/s41467-021-23142-8https://doi.org/10.1038/s41467-021-23142-8
Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic activities in gene regulatory architectures2021-05-25García-Pérez, R; Esteller-Cucala, P; Mas, G; Lobón, I; Di Carlo, V; Riera, M; Kuhlwilm, M; Navarro, A; Blancher, A; Di Croce, L; Gomez-Skarmeta, JL; J (2021). Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic activities in gene regulatory architectures. Nature Communications, 12(1), 3116-. DOI: 10.1038/s41467-021-23397-1https://doi.org/10.1038/s41467-021-23397-1
SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes2021-05-21Elosua-Bayes, M; Nieto, P; Mereu, E; Gut, I; Heyn, H (2021). SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Research, 49(9), e50-. DOI: 10.1093/nar/gkab043https://doi.org/10.1093/nar/gkab043
The impact of chromosomal fusions on 3D genome folding and recombination in the germ line2021-05-20Vara, C; Paytuví-Gallart, A; Cuartero, Y; Alvarez-González, L; Marín-Gual, L; Garcia, F; Florit-Sabater, B; Capilla, L; Sanchez-Guillen, RA; Sarrate, (2021). The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nature Communications, 12(1), 2981-. DOI: 10.1038/s41467-021-23270-1https://doi.org/10.1038/s41467-021-23270-1
Prunus persica plant endogenous peptides PpPep1 and PpPep2 cause PTI-like transcriptome reprogramming in peach and enhance resistance to Xanthomonas arboricola pv. pruni2021-05-18Foix, L; Nadal, A; Zagorscak, M; Ramsak, Z; Esteve-Codina, A; Gruden, K; Pla, M (2021). Prunus persica plant endogenous peptides PpPep1 and PpPep2 cause PTI-like transcriptome reprogramming in peach and enhance resistance to Xanthomonas arboricola pv. pruni. Bmc Genomics, 22(1), 360-. DOI: 10.1186/s12864-021-07571-9https://doi.org/10.1186/s12864-021-07571-9
The genomic history of the Aegean palatial civilizations2021-05-13Clemente, F; Unterländer, M; Dolgova, O; Amorim, CEG; Coroado-Santos, F; Neuenschwander, S; Ganiatsou, E; Dávalos, DIC; Anchieri, L; Michaud, F; Winke (2021). The genomic history of the Aegean palatial civilizations. Cell, 184(10), 2565-+. DOI: 10.1016/j.cell.2021.03.039https://doi.org/10.1016/j.cell.2021.03.039
Variability in porcine microRNA genes and its association with mRNA expression and lipid phenotypes2021-05-04Mármol-Sánchez, E; Luigi-Sierra, MG; Castelló, A; Guan, DL; Quintanilla, R; Tonda, R; Amills, M (2021). Variability in porcine microRNA genes and its association with mRNA expression and lipid phenotypes. Genetics Selection Evolution, 53(1), 43-. DOI: 10.1186/s12711-021-00632-3https://doi.org/10.1186/s12711-021-00632-3
Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age2021-05-01Llonch, S; Barragán, M; Nieto, P; Mallol, A; Elosua-Bayes, M; Lorden, P; Ruiz, S; Zambelli, F; Heyn, H; Vassena, R; Payer, B (2021). Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell, 20(5), e13360-. DOI: 10.1111/acel.13360https://doi.org/10.1111/acel.13360
Copy number variation underlies complex phenotypes in domestic dog breeds and other canids2021-05-01Serres-Armero, A; Davis, BW; Povolotskaya, IS; Morcillo-Suarez, C; Plassais, J; Juan, DV; Ostrander, EA; Marques-Bonet, T (2021). Copy number variation underlies complex phenotypes in domestic dog breeds and other canids. Genome Research, 31(5), 762-774. DOI: 10.1101/gr.266049.120https://doi.org/10.1101/gr.266049.120
Towards complete and error-free genome assemblies of all vertebrate species2021-04-29Rhie, A; McCarthy, SA; Fedrigo, O; Damas, J; Formenti, G; Koren, S; Uliano-Silva, M; Chow, W; Fungtammasan, A; Kim, J; Lee, C; Ko, BJ; Chaisson, M; Ge (2021). Towards complete and error-free genome assemblies of all vertebrate species. Nature, 592(7856), 737-+. DOI: 10.1038/s41586-021-03451-0https://doi.org/10.1038/s41586-021-03451-0
NADPH oxidase 4 (Nox4) deletion accelerates liver regeneration in mice2021-04-01Herranz-Itúrbide, M; López-Luque, J; Gonzalez-Sanchez, E; Caballero-Díaz, D; Crosas-Molist, E; Martín-Mur, B; Gut, M; Esteve-Codina, A; Jaquet, V; Jia (2021). NADPH oxidase 4 (Nox4) deletion accelerates liver regeneration in mice. Redox Biology, 40(), 101841-. DOI: 10.1016/j.redox.2020.101841https://doi.org/10.1016/j.redox.2020.101841
Maximizing the acquisition of unique reads in noninvasive capture sequencing experiments2021-04-01Fontsere, C; Alvarez-Estape, M; Lester, J; Arandjelovic, M; Kuhlwilm, M; Dieguez, P; Agbor, A; Angedakin, S; Ayimisin, EA; Bessone, M; Brazzola, G; De (2021). Maximizing the acquisition of unique reads in noninvasive capture sequencing experiments. Molecular Ecology Resources, 21(3), 745-761. DOI: 10.1111/1755-0998.13300https://doi.org/10.1111/1755-0998.13300
Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plasmablastic lymphoma2021-04-01Garcia-Reyero, J; Magunacelaya, NM; de Villambrosia, SG; Loghavi, S; Mediavilla, AG; Tonda, R; Beltran, S; Gut, M; Gonzalez, AP; D'Amore, E; Visco, C; (2021). Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plasmablastic lymphoma. Haematologica, 106(4), 1120-1128. DOI: 10.3324/haematol.2020.251579https://doi.org/10.3324/haematol.2020.251579
Comprehensive identification of somatic nucleotide variants in human brain tissue2021-03-29Wang, YF; Bae, T; Thorpe, J; Sherman, MA; Jones, AG; Cho, SA; Daily, K; Dou, YM; Ganz, J; Galor, A; Lobon, I; Pattni, R; Rosenbluh, C; Tomasi, S; Toma (2021). Comprehensive identification of somatic nucleotide variants in human brain tissue. Genome Biology, 22(1), 92-. DOI: 10.1186/s13059-021-02285-3https://doi.org/10.1186/s13059-021-02285-3
Immune cell profiling of the cerebrospinal fluid enables the characterization of the brain metastasis microenvironment2021-03-08Rubio-Perez, C; Planas-Rigol, E; Trincado, JL; Bonfill-Teixidor, E; Arias, A; Marchese, D; Moutinho, C; Serna, G; Pedrosa, L; Iurlaro, R; Martínez-Ric (2021). Immune cell profiling of the cerebrospinal fluid enables the characterization of the brain metastasis microenvironment. Nature Communications, 12(1), 1503-. DOI: 10.1038/s41467-021-21789-xhttps://doi.org/10.1038/s41467-021-21789-x
3D reconstruction of genomic regions from sparse interaction data2021-03-01Mendieta-Esteban, J; Di Stefano, M; Castillo, D; Farabella, I; Marti-Renom, MA (2021). 3D reconstruction of genomic regions from sparse interaction data. Nar Genom Bioinform, 3(1), lqab017-. DOI: 10.1093/nargab/lqab017https://doi.org/10.1093/nargab/lqab017
TADs enriched in histone H1.2 strongly overlap with the B compartment, inaccessible chromatin, and AT-rich Giemsa bands2021-03-01Serna-Pujol, N; Salinas-Pena, M; Mugianesi, F; Lopez-Anguita, N; Torrent-Llagostera, F; Izquierdo-Bouldstridge, A; Marti-Renom, MA; Jordan, A (2021). TADs enriched in histone H1.2 strongly overlap with the B compartment, inaccessible chromatin, and AT-rich Giemsa bands. Febs Journal, 288(6), 1989-2013. DOI: 10.1111/febs.15549https://doi.org/10.1111/febs.15549