TitleDateAuthorsDOI
Uncovering de novo gene birth in yeast using deep transcriptomics2021-12-01Blevins, WR; Ruiz-Orera, J; Messeguer, X; Blasco-Moreno, B; Villanueva-Cañas, JL; Espinar, L; Díez, J; Carey, LB; Albà, MM (2021). Uncovering de novo gene birth in yeast using deep transcriptomics. Nature Communications, 12(1), 604-. DOI: 10.1038/s41467-021-20911-3https://doi.org/10.1038/s41467-021-20911-3
Dietary palmitic acid promotes a prometastatic memory via Schwann cells2021-11-18Pascual, G; Dominguez, D; Elosua-Bayes, M; Beckedorff, F; Laudanna, C; Bigas, C; Douillet, D; Greco, C; Symeonidi, A; Hernandez, I; Gil, SR; Prats, N; (2021). Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature, 599(7885), 485-+. DOI: 10.1038/s41586-021-04075-0https://doi.org/10.1038/s41586-021-04075-0
GA4GH: International policies and standards for data sharing across genomic research and healthcare2021-11-10Rehm, HL; Page, AJH; Smith, L; Adams, JB; Alterovitz, G; Babb, LJ; Barkley, MP; Baudis, M; Beauvais, MJS; Beck, T; Beckmann, JS; Beltran, S; Bernick, (2021). GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell Genom, 1(2), 100029-. DOI: 10.1016/j.xgen.2021.100029https://doi.org/10.1016/j.xgen.2021.100029
STAG2 loss-of-function affects short-range genomic contacts and modulates the basal-luminal transcriptional program of bladder cancer cells2021-11-08Richart, L; Lapi, E; Pancaldi, V; Cuenca-Ardura, M; Carrillo-de-Santa Pau, E; Madrid-Mencia, M; Neyret-Kahn, H; Radvanyi, F; Rodriguez, JA; Cuartero, (2021). STAG2 loss-of-function affects short-range genomic contacts and modulates the basal-luminal transcriptional program of bladder cancer cells. Nucleic Acids Research, 49(19), 11005-11021. DOI: 10.1093/nar/gkab864https://doi.org/10.1093/nar/gkab864
Three-dimensional genome organization via triplex-forming RNAs2021-11-01Farabella, I; Di Stefano, M; Soler-Vila, P; Marti-Marimon, M; Marti-Renom, MA (2021). Three-dimensional genome organization via triplex-forming RNAs. Nature Structural & Molecular Biology, 28(11), 945-+. DOI: 10.1038/s41594-021-00678-3https://doi.org/10.1038/s41594-021-00678-3
The Genetic Landscape of Inherited Retinal Diseases in a Mexican Cohort: Genes, Mutations and Phenotypes2021-11-01Villanueva-Mendoza, C; Tuson, M; Apam-Garduño, D; de Castro-Miró, M; Tonda, R; Trotta, JR; Marfany, G; Valero, R; Cortés-González, V; Gonzàlez-Duarte, (2021). The Genetic Landscape of Inherited Retinal Diseases in a Mexican Cohort: Genes, Mutations and Phenotypes. Genes, 12(11), 1824-. DOI: 10.3390/genes12111824https://doi.org/10.3390/genes12111824
New genes involved in Angelman syndrome-like: Expanding the genetic spectrum2021-10-15Aguilera, C; Gabau, E; Ramirez-Mallafré, A; Brun-Gasca, C; Dominguez-Carral, J; Delgadillo, V; Laurie, S; Derdak, S; Padilla, N; de la Cruz, X; Capdev (2021). New genes involved in Angelman syndrome-like: Expanding the genetic spectrum. Plos One, 16(10), e0258766-. DOI: 10.1371/journal.pone.0258766https://doi.org/10.1371/journal.pone.0258766
The loss of DHX15 impairs endothelial energy metabolism, lymphatic drainage and tumor metastasis in mice2021-10-15Ribera, J; Portoles, I; Cordoba-Jover, B; Rodriguez-Vita, J; Casals, G; Gonzalez-De la Presa, B; Graupera, M; Solsona-Vilarrasa, E; Garcia-Ruiz, C; Fe (2021). The loss of DHX15 impairs endothelial energy metabolism, lymphatic drainage and tumor metastasis in mice. Commun Biol, 4(1), 1192-. DOI: 10.1038/s42003-021-02722-whttps://doi.org/10.1038/s42003-021-02722-w
The genetic impact of an Ebola outbreak on a wild gorilla population2021-10-11Fontsere, C; Frandsen, P; Hernandez-Rodriguez, J; Niemann, J; Scharff-Olsen, CH; Vallet, D; Le Gouar, P; Menard, N; Navarro, A; Siegismund, HR; Hvilso (2021). The genetic impact of an Ebola outbreak on a wild gorilla population. Bmc Genomics, 22(1), 735-. DOI: 10.1186/s12864-021-08025-yhttps://doi.org/10.1186/s12864-021-08025-y
Repression of endogenous retroviruses prevents antiviral immune response and is required for mammary gland development2021-10-07Avgustinova, A; Laudanna, C; Pascual-García, M; Rovira, Q; Djurec, M; Castellanos, A; Urdiroz-Urricelqui, U; Marchese, D; Prats, N; Van Keymeulen, A; (2021). Repression of endogenous retroviruses prevents antiviral immune response and is required for mammary gland development. Cell Stem Cell, 28(10), 1790-+. DOI: 10.1016/j.stem.2021.04.030https://doi.org/10.1016/j.stem.2021.04.030
Major Reorganization of Chromosome Conformation During Muscle Development in Pig2021-10-05Marti-Marimon, M; Vialaneix, N; Lahbib-Mansais, Y; Zytnicki, M; Camut, S; Robelin, D; Yerle-Bouissou, M; Foissac, S (2021). Major Reorganization of Chromosome Conformation During Muscle Development in Pig. Frontiers In Genetics, 12(), 748239-. DOI: 10.3389/fgene.2021.748239https://doi.org/10.3389/fgene.2021.748239
A single-cell tumor immune atlas for precision oncology2021-10-01Nieto, P; Elosua-Bayes, M; Trincado, JL; Marchese, D; Massoni-Badosa, R; Salvany, M; Henriques, A; Nieto, J; Aguilar-Fernández, S; Mereu, E; Moutinho, (2021). A single-cell tumor immune atlas for precision oncology. Genome Research, 31(10), 1913-1926. DOI: 10.1101/gr.273300.120https://doi.org/10.1101/gr.273300.120
The early-life exposome and epigenetic age acceleration in children2021-10-01de Prado-Bert, P; Ruiz-Arenas, C; Vives-Usano, M; Andrusaityte, S; Cadiou, S; Carracedo, A; Casas, M; Chatzi, L; Dadvand, P; González, JR; Grazulevici (2021). The early-life exposome and epigenetic age acceleration in children. Environment International, 155(), 106683-. DOI: 10.1016/j.envint.2021.106683https://doi.org/10.1016/j.envint.2021.106683
Fine-scale population structure in five rural populations from the Spanish Eastern Pyrenees using high-coverage whole-genome sequence data2021-10-01Maceda, I; Alvarez, MM; Athanasiadis, G; Tonda, R; Camps, J; Beltran, S; Camps, A; Fàbrega, J; Felisart, J; Grané, J; Remón, JL; Serra, J; Moral, P; L (2021). Fine-scale population structure in five rural populations from the Spanish Eastern Pyrenees using high-coverage whole-genome sequence data. European Journal Of Human Genetics, 29(10), 1557-1565. DOI: 10.1038/s41431-021-00875-0https://doi.org/10.1038/s41431-021-00875-0
Molecular pathophysiology of human MICU1 deficiency2021-10-01Kohlschmidt, N; Elbracht, M; Czech, A; Husler, M; Phan, V; Tpf, A; Huang, KT; Bartok, A; Eggermann, K; Zippel, S; Eggermann, T; Freier, E; Gross, C; L (2021). Molecular pathophysiology of human MICU1 deficiency. Neuropathology And Applied Neurobiology, 47(6), 840-855. DOI: 10.1111/nan.12694https://doi.org/10.1111/nan.12694
Clinical and Genetic Features of Autosomal Dominant Alport Syndrome: A Cohort Study2021-10-01Furlano, M; Martinez, V; Pybus, M; Arce, Y; Crespi, J; Venegas, MD; Bullich, G; Domingo, A; Ayasreh, N; Benito, S; Lorente, L; Ruiz, P; Gonzalez, VL; (2021). Clinical and Genetic Features of Autosomal Dominant Alport Syndrome: A Cohort Study. American Journal Of Kidney Diseases, 78(4), 560-U82. DOI: 10.1053/j.ajkd.2021.02.326https://doi.org/10.1053/j.ajkd.2021.02.326
Salmonella enterica from a soldier from the 1652 siege of Barcelona (Spain) supports historical transatlantic epidemic contacts2021-09-24De-Dios, T; Carrion, P; Olalde, I; Nadal, LL; Lizano, E; Pamies, D; Marques-Bonet, T; Balloux, F; van Dorp, L; Lalueza-Fox, C (2021). Salmonella enterica from a soldier from the 1652 siege of Barcelona (Spain) supports historical transatlantic epidemic contacts. Iscience, 24(9), 103021-. DOI: 10.1016/j.isci.2021.103021https://doi.org/10.1016/j.isci.2021.103021
Ancient and modern genomes unravel the evolutionary history of the rhinoceros family2021-09-16Liu, SL; Westbury, MV; Dussex, N; Mitchell, KJ; Sinding, MHS; Heintzman, PD; Duchêne, DA; Kapp, JD; von Seth, J; Heiniger, H; Sánchez-Barreiro, F; Mar (2021). Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell, 184(19), 4874-+. DOI: 10.1016/j.cell.2021.07.032https://doi.org/10.1016/j.cell.2021.07.032
Differential contribution to gene expression prediction of histone modifications at enhancers or promoters2021-09-01González-Ramírez, M; Ballaré, C; Mugianesi, F; Beringer, M; Santanach, A; Blanco, E; Di Croce, L (2021). Differential contribution to gene expression prediction of histone modifications at enhancers or promoters. Plos Computational Biology, 17(9), e1009368-. DOI: 10.1371/journal.pcbi.1009368https://doi.org/10.1371/journal.pcbi.1009368
Solving patients with rare diseases through programmatic reanalysis of genome-phenome data2021-09-01Matalonga, L; Hernandez-Ferrer, C; Piscia, D; Schüle, R; Synofzik, M; Töpf, A; Vissers, LELM; de Voer, R; Tonda, R; Laurie, S; Fernandez-Callejo, M; P (2021). Solving patients with rare diseases through programmatic reanalysis of genome-phenome data. European Journal Of Human Genetics, 29(9), 1337-1347. DOI: 10.1038/s41431-021-00852-7https://doi.org/10.1038/s41431-021-00852-7